Los catalizadores hechos de óxido de cobre son superiores a los catalizadores de origen puramente metálico cuando se trata de producir etileno, un gas de dos carbonos con una enorme gama de aplicaciones industriales, así lo aseguran desde Madri+D.
De acuerdo con los científicos del Laboratorio Nacional Lawrence Berkeley (Berkeley Lab) y Caltech, el cobre que una vez estuvo ligado al oxígeno es mejor para convertir el dióxido de carbono en combustibles renovables que el cobre que nunca estuvo ligado al oxígeno.
Para este estudio, y según fuentes de Madri+D, los científicos hicierron una espectroscopia de rayos X en prototipos de generadores de combustible de origen solar ya en funcionamiento para demostrar que los catalizadores hechos de óxido de cobre son superiores a los catalizadores de origen puramente metálico cuando se trata de producir etileno, un gas de dos carbonos con una enorme gama de aplicaciones industriales, incluso después de que no queden átomos de oxígeno detectables en el catalizador.
"Muchos investigadores han demostrado que los catalizadores de cobre derivados del óxido son mejores para hacer productos de combustible a partir de CO2, sin embargo, hay un debate sobre por qué ocurre esto", explica el co-líder de la investigación Walter Drisdell, químico del Laboratorio de Berkeley y miembro del Centro Conjunto para la Fotosíntesis Artificial (JCAP). La misión del JCAP es desarrollar tecnologías eficientes, alimentadas por energía solar, que puedan convertir el CO2 atmosférico en combustibles alternativos al petróleo.
También explicó que bajo las condiciones de operación para la generación de combustible el oxígeno ligado al cobre se agota de forma natural en el catalizador. Sin embargo, algunos investigadores creen que permanecen en la estructura metálica pequeñas cantidades de oxígeno, y que esta es la fuente del aumento de la eficiencia.
Para acabar el debate, el equipo de investigadores llevaron un sistema de cromatografía de gases (GC) a la línea de haz de rayos X para poder detectar la producción de etileno en tiempo real. "Nuestros colaboradores de Caltech trajeron el GC desde Pasadena y lo instalaron en las instalaciones de rayos X en Palo Alto", detalla Soo Hong Lee, un investigador postdoctoral en el Laboratorio de Berkeley y co-autor del estudio. "Con él, demostramos que no hay correlación entre la cantidad de oxígeno ('óxido') en el catalizador y la cantidad de etileno producida. Así que pensamos que los catalizadores derivados del óxido son buenos, no porque tengan oxígeno remanente mientras reducen el monóxido de carbono, sino porque el proceso de eliminación del oxígeno crea una estructura metálica de cobre que es mejor para formar etileno" añade.
Por último, el equipo demostró además que, aunque la eficiencia de los catalizadores derivados del óxido disminuye con el tiempo, puede "reactivarse" regularmente reagrupando y retirando el oxígeno durante un simple proceso de mantenimiento. Y el siguiente paso es diseñar una célula generadora de combustible que pueda funcionar con instrumentos de dispersión de rayos X, lo que les permite trazar directamente un mapa de la estructura cambiante del catalizador mientras convierte el monóxido de carbono en etileno.
El equipo de investigación también incluyó a Ian Sullivan y Chengxiang Xiang en Caltech, y a David Larson, Guiji Liu y Francesca Toma en el Laboratorio de Berkeley. Este trabajo fue apoyado por la Oficina de Ciencia del Departamento de Energía de los Estados Unidos (DOE). JCAP es un centro de innovación energética del DOE.
En plena aceleración de la Industria 4.0, la ciberseguridad emerge como el factor determinante para garantizar una transición segura hacia las fábricas inteligentes del futuro. Palo Alto Networks explica cómo alcanzar la ciberresiliencia.
La compañía Moeve ha obtenido la Medalla de Platino de EcoVadis, la máxima distinción que concede esta plataforma global de evaluación de sostenibilidad, que analiza el desempeño ambiental, social y de gobernanza (ESG) de más de 50.000 empresas...
Según destaca el diario Okdiario en un artículo firmado por Francisco María, la química verde (también conocida como química sostenible) se presenta como una respuesta inteligente a los desafíos ecológicos que enfrenta la industria química actual.
El instituto tecnológico del plástico aplica tecnologías como la delaminación fisicoquímica, la combinación de tecnologías mecánicas de separación y el reciclado enzimático para reciclar residuos plásticos multicapa de forma eficiente y sostenible.
La asamblea general anual de AEDyR ha elegido a Belén Gutiérrez como nueva presidenta de su Comité de Dirección, al que también se incorporan Jon Beristain, Silvia Gallego, Elena Crespo y Bartolomé Marín.
La compañía Moeve ha firmado un acuerdo con TotalEnergies para vender la totalidad del capital social de su filial Cepsa Suriname S. L., que posee una participación del 25% en el Bloque 53 frente a las costas de Surinam.
Con el objetivo de ofrecer soluciones sostenibles en sectores clave como la construcción, la movilidad y la seguridad alimentaria, Aimplas lidera 14 proyectos innovadores. Estas investigaciones, realizadas en colaboración con 26 empresas, abordan...
Un reciente estudio liderado por el Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA-CSIC) ha revelado la presencia de plastificantes en más del 85 % de los alimentos analizados en España. La investigación, enmarcada en el proyecto Expoplas...
La reactivación de la exención del 80% de los peajes eléctricos aprobada por el Consejo de Ministros ha sido vista con buenos ojos por parte del sector químico español que, sin embargo, reclama reformas estructurales y permantentes.
El XVI Congreso Nacional de Materiales Compuestos, co-organizado por CIMNE, adscrito a la UPC, y AEMAC celebra su XVI edición del martes 8 al jueves 10 de julio en el World Trade Center de Barcelona.
Comentarios